Maths class-9 circle (solved exercise) By-Ashish Jha

10.4 Class 9 Maths Question 1.

Two circles of radii 5 cm and 3 cm intersect at two points and the distance between their centres is 4 cm. Find the length of the common chord. Solution:

We have two intersecting circles with centres at O and O' respectively. Let PQ be the common chord.

: In two intersecting circles, the line joining their centres is perpendicular bisector of the common chord.

```
\therefore \angle OLP = \angle OLQ = 90^{\circ} \text{ and } PL = LQ
Now, in right \triangle OLP, we have
PL2 + OL2 = 2
\Rightarrow PL2 + (4 - x)2 = 52
\Rightarrow PL2 = 52 - (4 - x)2
\Rightarrow PL2 = 25 - 16 - x2 + 8x
\Rightarrow PL2 = 9 - x2 + 8x \dots (i)
Again, in right \triangle O'LP,
PL2 = PO'2 - LO'2
= 32 - x2 = 9 - x2 \dots (ii)
From (i) and (ii), we have
9 - x2 + 8x = 9 - x2
\Rightarrow 8x = 0
\Rightarrow x = 0
\Rightarrow L and O' coincide.
```

 \therefore PQ is a diameter of the smaller circle. \Rightarrow PL = 3 cm

But PL = LQ $\therefore LQ = 3 \text{ cm}$ $\therefore PQ = PL + LQ = 3\text{ cm} + 3\text{ cm} = 6\text{ cm}$ Thus, the required length of the common chord = 6 cm.

Question 2. If two equal chords of a circle intersect within the circle, prove that the segments of one chord are equal to corresponding segments of the other chord. Solution:

Given: A circle with centre O and equal chords AB and CD intersect at E. To Prove: AE = DE and CE = BEConstruction : Draw OM \perp AB and ON \perp CD. Join OE. Proof: Since AB = CD [Given] \therefore OM = ON [Equal chords are equidistant from the centre] Now, in \triangle OME and \triangle ONE, we have \angle OME = \angle ONE [Each equal to 90°] OM = ON [Proved above] OE = OE [Common hypotenuse] \therefore \triangle OME \cong \triangle ONE [By RHS congruence criteria] \Rightarrow ME = NE [C.P.C.T.]

Adding AM on both sides, we get \Rightarrow AM + ME = AM + NE \Rightarrow AE = DN + NE = DE \therefore AB = CD \Rightarrow 12 = DC \Rightarrow AM = DN \Rightarrow AE = DE ...(i)

Now, AB - AE = CD - DE $\Rightarrow BE = CE \dots(i)$ From (i) and (ii), we have AE = DE and CE = BE

Question 3.

If two equal chords of a circle intersect within the circle, prove that the line joining the point of intersection to the centre makes equal angles with the chords. Solution:

Given: A circle with centre O and equal chords AB and CD are intersecting at E. To Prove : $\angle OEA = \angle OED$

Construction: Draw OM \perp AB and ON \perp CD.

Join OE. Proof: In \triangle OME and \triangle ONE, OM = ON [Equal chords are equidistant from the centre] OE = OE [Common hypotenuse] $\angle OME = \angle ONE$ [Each equal to 90°] $\therefore \triangle OME \cong \triangle ONE$ [By RHS congruence criteria] $\Rightarrow \angle OEM = \angle OEN$ [C.P.C.T.] $\Rightarrow \angle OEA = \angle OED$

Thanks... please wait for the next part....